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A new lattice-gas cellular automaton model for simulating binary fluids in three 
dimensions is introduced. It is particularly suitable for modeling slow flows of 
mixtures with complicated interface geometries or within complicated bound- 
aries, such as in the interior of a porous rock. Phase separation is triggered 
spontaneously in the model by statistical fluctuations and phase domains are 
approximately isotropic. The measured surface tension is large compared to that 
in analogous two-dimensional models. The model is applied to a study of the 
time-dependent effective viscosity of a phase-separating mixture in a simple 
shear flow. Results qualitatively match both experiment and theory: the 
viscosity increases rapidly, then decays gradually to a steady-state value which 
is larger than the viscosity of the pure fluids. The effective viscosity increases 
with increasing concentration and decreases with increasing strain rate. 

KEY WORDS: Multiphase flow; computational techniques; phase transitions. 

1. INTRODUCTION 

A vinaigrette is a binary fluid mixture; so is a cloud, consisting of drops of 
water suspended in air. An oil reservoir usually contains gas or water or 
both along with the oil, so it is better to describe it as a multiphase mixture 
dispersed among the grains of a sedimentary rock rather than as a single 
phase. An alloy or a polymer blend may separate into phases as it cools, 
leading to properties different from its components ;  indeed, the effective 
properties of such mixtures are of considerable technological importance. ~ ~ 
These are just  a few examples of commonplace  multiphase fluid mixtures; 
despite their ubiqui ty  and the relative simplicity of the consti tuent phases, 

~Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 02139. 

199 

0022-4715/95/1000-0199507.50/0 �9 1995 Plenum Publishing Corporation 



200 Olson and Rothman 

and despite a long history of theoretical and empirical study (for example, 
refs. 2-10), their rheological properties remain poorly understood. While 
analytical methods have yielded much insight, practical experimental 
systems are often more complicated than the theory. Numerical methods 
provide a means to extend the theory to these more complex systems or, 
conversely, to make the complexity of real systems more available to 
theoretical analysis. 

The equations of motion for fluid mixtures are well known: the 
Navier-Stokes equations describe the fluid away from interfaces, while the 
specification of "jump" boundary conditions describes the coupling of inter- 
faces to the bulk fluid. ~L]) Applying boundary conditions at interfaces which 
are continually moving, merging, and breaking is difficult in analytical 
work, so a variety of numerical methods have been developed. These 
include the volume-of-fluid (VOF), ~z) cell-dynamical system (CDS), (13' 14) 
lattice-gas ~5-18~ and lattice-Boltzmann ~t9-23) methods. Each of these 
methods has advantages for different kinds of calculations. The VOF 
method offers flexibility, although it is apparently inapplicable for modeling 
the early stages of phase separation; the CDS method is designed for 
modeling these early stages, but does not conveniently incorporate 
hydrodynamic phenomena; the lattice-Boltzmann method can model early 
phase separation efficiently and naturally incorporates hydrodynamics, but 
fluctuations, which are essential for initiating spinodal decomposition, must 
be imposed on the model by fiat. The lattice gas has the advantages of the 
lattice-Boltzmann method, and it is inherently faster; further, it has fluctua- 
tions which on the one hand trigger spinodal decomposition, but on the 
other, obscure detailed flow structure. The averaging needed to reduce the 
noise so that details may be resolved may eliminate the speed advantage, 
but if one wishes to calculate a single macroscopic property, such as the 
effective viscosity of a mixture, spatial averaging may be sufficient and 
speed is regained. In addition, the Boolean lattice gas may be simulated 
on existing special-purpose hardware, notably CAM-8, ~24"25~ which may 
provide substantial increases in speed. In this paper, a new lattice-gas 
cellular automaton method for modeling binary fluid mixtures in three 
dimensions is described and applied to a study of the time-dependent 
rheology of sheared, phase-separating systems. ~26-28) 

Two main technical innovations have been incorporated into our new 
model. First, a symmetric discretization scheme for the interface orientation 
makes the tables needed for efficient calculations compact enough to be 
practical; second, a new scheme is introduced (called the "dumbbell 
method") for modifying the stress tensor at interfaces to create surface 
tension. A three-dimensional, immiscible lattice-gas cellular automaton had 
been developed earlier (z9~ using different ideas; however, our new model 
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is more closely related to well-studied lattice-gas and lattice-Boltzmann 
models of immiscible fluids ~15"~8-2~176 and accordingly we feel that its 
theoretical foundation is better understood. Perhaps even more impor- 
tantly, our new model offers the possibility of a relatively simple extension 
to three or more phases, for which there are now only two-dimensional 
lattice-gas modeIs.~31.3:2) 

In what follows, a brief description of lattice-gas models will be made, 
emphasizing the discreteness of all the state variables and operations in 
such models. The new model will be introduced by adding another 
property to the existing three-dimensional, single-species lattice gas, a 
color which labels each particle; the dynamics is then modified by adding 
two new operations which depend on the distribution of color. These 
operations are reorienting, which employs the dumbbell method to generate 
surface tension between the species, and recoloring, which arranges the 
colors of the particles so that the two species separate from one another. 
Both these operations depend on the orientation of interfaces between the 
species, so both require the symmetric discretization scheme mentioned 
above. 

After describing the method itself, we present certain properties of the 
model. Uniform mixtures are shown to separate into distinct phases, and the 
surface tension in the model is found to satisfy Laplace's law, which serves 
both as a test of the model and as a means to measure the strength of the 
surface tension. The surface tension is found to be much stronger than had 
been observed in earlier two-dimensional models and phase domains are 
additionally shown to be statistically isotropic. Lastly, the lattice gas is used 
to model a binary mixture undergoing phase separation during a steady 
shear flow, and the time-dependent effective viscosity of the mixture is 
measured. The viscosity is observed to increase rapidly after the separation 
starts and then to decay more gradually to a steady-state viscosity which is 
larger than that of the pure fluids. This qualitatively matches experimental 
observations, and is also shown to be consistent with theory. 

2. LATTICE GAS MODELS 

The lattice-gas method, as proposed by Frisch e t  al., (33" 34) models fluids 
not by solving discretized Navier-Stokes equations, but by simulating in a 
grossly simplifked way the interactions of particles composing the fluid. 
These particles should be understood not as simplified molecules, but as a 
metaphor, since their properties are entirely abstract and do not reflect 
those of real particles composing real fluids. Nevertheless, the equations 
of hydrodynamics can be recovered from the average motions of these 
particles. 
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Lattice-gas methods have been described many times in the literature 
(for example, refs. 34 and 18), so only a very brief description will be given 
here. A single-phase lattice gas is fully discrete in time, space, mass, and 
velocity. Its particles occupy nodes of a regular, space-filling lattice and 
move from one node to another in each time step. A particle usually has 
only one property, a velocity e which is exactly enough to move it from one 
node to a neighbor in one time step. Because the lattice is regular, the set 
of all possible velocities is finite and the same set suffices for every node. 
The set can be indexed in any convenient way. The particles have a Fermi 
exclusion rule: no two particles may have the same velocity at the same 
node at the same time. Therefore, the presence or absence of a particle with 
velocity c; can be indicated with the state of a single bit: n~(x, t) = 1 if a 
particle with velocity c; is present at the node located at x at time step t, 
and 0 otherwise. The state of a node is the set of all the n,., and will be 
denoted n. 

The particles undergo two operations, propagation and collision, in 
each time step. The particles present at a node collide with each other, 
conserving the number of particles and the total momentum at the node, 
but assigning new velocities to the particles; symbolically, 

n'(x, t ) =  Cg(n(x, t)) ( i )  

where cg is the collision operator, a function which maps the set of all states 
onto itself, satisfying the conservation properties specified above. After the 
collision, each particle propagates to the neighboring node in the direction 
of its velocity: 

ni(x + rci, t + r) = n'i(x, t) (2) 

where r is the duration of a time step. In what follows, z will be taken to 
be 1, and c; will be used interchangeably as a velocity or as a displacement. 
A coarse-grained average of the particle velocities u, satisfies equations 
much like the Navier-Stokes equations for incompressible fluids ~33-37" is). 

0u 
V. u = 0  and p-~+pg(p)u.  Vu= - V P + r / V 2 u  (3) 

where P is pressure, q is dynamic viscosity, and p is the density of the fluid. 
If the factor g(p), which is a consequence of the discreteness of the lattice, 
were equal to one, these would be precisely the Navier-Stokes equations. 
For single-phase models, the factor g(p) can be eliminated by rescaling the 
velocity, (33~ and more involved methods exist to make g(p) equal to one in 
two-phase fluids 138), but for low-Reynolds-number flow (as will be con- 
sidered in this paper) g(p) is of little consequence. 
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In  o r d e r  to have  i so t rop ic  d iss ipa t ion  in three  d imens ions ,  the  nodes  
o f  the  lat t ice are  chosen  to be m e m b e r s  o f  a " face-centered  hype rcub ic"  

( F C H C )  lat t ice,  139) a fou r -d imens iona l  lat t ice o f  po ly topes  wi th  Schl/ifli 

s y m b o l  {3, 4, 3}. (4~ A l t h o u g h  this lat t ice is c o n n e c t e d  in four  d imens ions ,  

it can  effectively be p ro jec t ed  in to  three  d imens ions  by m a k i n g  it on ly  two  

nodes  th ick  and  per iod ic  in the four th  d imens ion .  F igu re  1 shows  a three-  

d imens iona l  p ro jec t ion  of  the uni t  cell o f  the  lattice. E a c h  n o d e  is con-  

nec ted  to  24 ident ica l  neares t  ne ighbors ,  and  the  veloci t ies  a re  vec tors  wi th  

two  c o o r d i n a t e s  ze ro  and  two  c o o r d i n a t e s  equa l  to ___ 1. The  lat t ice can  be 

descr ibed  as the set o f  po in t s  wi th  four  in teger  Car t e s i an  c o o r d i n a t e s  which  

Fig. 1. The FCHC lattice. This is a representation of a three-dimensional projection of the 
unit cell of the four-dimensional lattice. The open circle at the center of the cubic box is a 
node of the lattice, and the filled circles and Xs are its 24 neighbors. Although the filled circles 
and Xs appear to be at different distances from the open circle, in four dimensions all the 
distances are the same. Each X corresponds to two neighbors which differ only in the fourth 
dimension; in this three-dimensional projection, they lie on top of each other. Gray circles and 
dashed Xs are on the far side of the unit cell. If the open circle is the origin, then the neighbors 
are all those locations with two coordinates equal to zero and two which are + 1. 
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add up to an even number: for example, (0, 0, 0, 0) and (1, 0, - 3 ,  0) are 
members of the lattice, but (1 ,2 ,0 ,0 )  is not. There are thus 2 24 or 
16,777,216 possible states at each node, so simply selecting the collision 
operator cg is a substantial problem, c4~) Our implementation of the 
two-phase, three-dimensional model uses an efficient operator developed by 
Somers, Rem, and Westland t42"43) for the homogeneous fluid away from 
interfaces, although other operators could also be used. 

3. THE TWO-PHASE MODEL 

A variety of lattice-gas methods have been introduced to model multi- 
phase flows, 1~8) including the two-species methods of Rothman and 
KellerJ ~5~ Somers and Rem, ~44"29~ and Chen et al.C45~; in addition, the 
single-species method of Appert and Zaleski ~46'16"17) separates spon- 
taneously into regions of different density, simulating liquid and vapor 
phases. Our new model is most closely related to the Rothman and Keller 
model, with some influences from the related lattice-Boltzmann methods 
(for example, refs. 19 and 20). Earlier two-dimensional, two-species models 
have been applied to studies of complex flows in two dimensions ~47-49~ and 
have been extended to model three ~3~) and arbitrarily many ~32~ species in 
two dimensions. It is not clear, however, to what extent the results of two- 
dimensional simulations of multiphase flow can be applied to real, three- 
dimensional flows. For example, it is not possible in two dimensions for 
two species to span a box in both directions, while in three dimensions, 
both species can span a box in all directions simultaneously. Moreover, the 
dynamics of bubble breakage are entirely different in two and three dimen- 
sions. Thus it is necessary to develop a three-dimensional model to make 
meaningful simulations. 

In the two-species models, an additional degree of freedom is assigned 
to each particle, a color which will be called red or blue. Particles carry 
color with them as they propagate, and color is conserved in collisions, just 
like mass and momentum. If a particle with velocity ei is present at node 
x at time t, and if this particle is red, then ri(x, t ) =  1 and otherwise, 0; 
if this particle is blue, then b,.(x, t ) =  1 and otherwise, 0. Consequently, 
n i = r i q - b  i. The color states r =  {ri}iE[i,24] and b =  {bi}i~[l.24] defined in 
this way are used only for the propagation step. The collision rule (1) is 
applied to the state n without regard to color, and the new rules (defined 
below) which create phase separation and surface tension depend not on 
the velocity of each colored particle, but on the color density field 

~(X) : ~. (ri(x) --bi(x)) (4) 
i 
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the gradient of the color density 

f=  ~ cAb(x + Ci) (5) 
i 

and the total number of red particles, 

N~r = ~ ri(x) (6) 
i 

If the color gradient f has a magnitude larger than some threshold, it is 
taken to indicate the local normal to an interface, and surface tension is 
created at this node. Surface tension can be expressed as a local anisotropy 
in the pressure: the pressure measured normal to the surface is larger than 
that tangential to the surface. ~5~ The pressure in a lattice gas is propor- 
tional to the density, so surface tension can be generated by placing 
particles preferentially in directions normal to the interface rather than 
tangential, while of course conserving momentum. Thus, we modify the 
post collision state n' to a new state n" by preferentially placing particles 
in directions as nearly parallel (and antiparallel) to f as possible, that is, by 
maximizing 

E n~' If" cg] (7) 

where f =  f/Ill, the unit vector in the direction of the color gradient. 
This maximization is approximated by reorienting pairs of oppositely 
directly particles (called dumbbells). Because these dumbbells have no net 
momentum, they can be reoriented freely, provided that they do not dis- 
place any other particles. The dumbbell scheme is the first of the two main 
technical innovations presented in this paper. 

3.1. The Dumbbell Scheme 

Reorienting. For each velocity c; there is a diametric opposite, a cj 
such that c j = - c i .  Let us suppose that the set of velocities has been 
indexed such that j =  i +  12 for all iE [ 1, 12]; that is, c;+ ~a = - c i .  Then we 
will divide the ~ost collision state n' into two symmetric parts, L and H, 
corresponding to the velocities with low and high indices, respectively: 

L , ( n ' )  = 17',. 
for i~ [1 ,  12] 

H;(n') ' h i +  12 

(8)  

822/81/I-2-14 
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It is convenient to describe the dumbbell method in terms of bitwise logical 
operations as follows: 

AiandB;={10 ifotherwiseA;= 1 and B ; = I  

{~ if A i = l o r B i = l  
A; or B; = otherwise 

{10 if Air'B; 
A i x o r  B i =  if A; = B i 

{10 if A;=O 
n o t A ; =  if A ; = I  

(9) 

The set of dumbbells D ( n ' ) =  {D;};~[ L ,21 is then all those directions i for 
which H i and L; are both equal to one: 

D/(n') = H i and L; (10) 

We also define the pairs of directions which contain unpaired particles: 

U/(n') = Hixor  Li ( 11 ) 

It follows that (D;and U; )=0  for all i, that is, no pair of velocities can 
contain both a dumbbell and an unpaired particle. 

A new set of dumbbells 13 is chosen to maximize 

12 

Y~/3; If" e,I (12) 
i= l  

while conserving the number of dumbbells (Z;/3;  = Z;  D;) and using only 
those directions j with Uj = 0, so that the property 

(/3 i and U;) = 0 

is preserved. This new set of dumbbells is used to construct a new state: 

Li = Li and (not D;) or/3 i 
(13) 

/~i = H/and (not Di) or/3i 
that is, the new state is composed by removing the old dumbbells from the 
old state and adding the new ones. H and f, together compose n", the state 
after collision and reorienting: 

{[,i for i~< 12 
n~'= ffli_,2 for i >  12 

(14) 
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Recoloring.  Once the new state n" has been constructed, colors are 
reassigned to particles to minimize the diffusion of each species into the 
other. We define the color flux 

q(~, ~) = ~ c~(~,- ~;) (15) 
i 

and choose ~,. and b; from those directions i which have n~' = 1, to maximize 

while conserving the total number of red particles, 

E J~i = Nred 
i 

Since each particle is either red or blue, labeling the red particles implicitly 
labels the blue particles. 

Rather than carrying out the operations described above at every node 
and every time step, it is more efficient to precompute the results of these 
operations and store them in tables; then during the simulation, lengthy 
computation can be replaced with fast table lookups. However, these 
operations depend upon the direction of the gradient f, and it is not 
practical to tabulate all the possible directions of the gradient. As detailed 
below, the symmetry of the lattice is used to reduce substantially the size 
of these tables, making the calculation practical. 

3.2. Symmet r ic  Ti l ing 

The use of lattice symmetries proceeds by first breaking up the unit 
sphere into triangular tiles, all of the same size and shape but possibly of 
different orientation. These tiles, shown in Fig. 2, are constructed by 
drawing on the unit sphere the three great circles C.,., Cy, and C_ in the 
planes normal to the x, y, and z axes, respectively. The six great circles 
which bisect the angles between each pair of C,., Cy, and Cz are also 
drawn. This divides the unit sphere into 48 tiles with many of the same 
symmetry properties as the FCHC lattice. One of the tiles is designated as 
the archetype,,and tables are prepared to carry out the reorienting and 
recoloring operations for the four gradient directions given by the corners 
and the center of the archetypal tile. A table of lattice symmetry operations 
which transform each tile into the archetype is prepared as well. 

Since the dumbbell method uses only the unit gradient vector f,, it suf- 
fices to determine the tile through which the gradient vector passes, and 
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Fig. 2. The unit sphere is tiled with 48 identical triangles as shown, and unit gradients (i.e., 
f/Ifl) are discretized to either a corner or the center of a triangle. The corners of the tiles are 
permutations of ( 4-1, 0, 0), where eight tiles meet; permutations of ( +__ 1, +_ 1, 0)/v/2, where 
four tiles meet; and permutations of ( + I, +_ 1, + I )/x/~, where six tiles meet. 

whether it passes nearer the center of  the tile or one of  its corners. Having 
found this tile, the appropriate  lattice-symmetry operation 9 -  is used to 
move the gradient into the archetypal tile, and simultaneously to make the 
transformation n ' ~  J -n ' .  The nearest of  the four archetypal gradients is 
used to find the appropriate reorientation and recoloring for the trans- 
formed state, yielding Y-n" and Y~. Finally, the inverse transformation 
~ - -  ~ is applied to these sets, returning them to the original orientation and 
yielding n" and ~. 

The set of  discrete orientations is large enough (it has 74 elements) 
that it successfully represents interfaces of  arbitrary orientation, but it uses 
only four archetypes, which substantially reduces the memory needed to 
hold the tables. 

In summary,  the three-dimensional I L G  algorithm consists of four 
steps, repeated endlessly: propagate,  collide, reorient, and recolor, the latter 
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two employing the symmetric tiling and the dumbbell method. In the 
earlier two-dimensional ILG models, the reorienting and recoloring were 
incorporated implicitly into the collision; here, on the other hand, they 
have been kept explicitly separate so that existing single-phase collision 
rules (43"42) could be used unmodified, and also so that the strength of the 
surface tension and the antidiffusive flux may be adjusted independently of 
other model parameters. 

4. P R O P E R T I E S  OF T H E  M O D E L  

A computer program has been constructed to implement the model as 
described, and various properties of the method have been measured from 
simulations. The first observation to make is that an initially uniform 
mixture does indeed undergo spontaneous phase separation (Fig. 3), as 
expected. The dynamics of phase separation has been examined in detail by 
Appert e t  al.  ~si) They conclude that the phase separation dynamics is 
consistent with theory, experiment, and other simulation methods, and 
they use the lattice gas to demonstrate the effect of hydrodynamics on the 
late stages of phase separation. Below, we discuss the surface tension of 
interfaces and isotropy of the phase domains. 

Fig. 3. Phase separation. The mixture was initialized with a uniform concentration of 10.% 
red particles and 90% blue particles on a lattice of size 16 x 32 x 32; in these images, nodes 
with mostly blue particles are invisible and nodes with mostly red particles are gray. The 
images are at (a) 400 and (b) 4000 time steps after beginning separation. 
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Fig. 4. The Laplace law is satisfied by phase domains. Circles are results from simulations, 
and the line is a best fit passing through the origin. Error bars on the data are within the 
circles. This case is for a density of 12 particles per node. 

4.1. Surface Tension 

Fig. 5. 

If the lattice gas is initialized with a finite region of one species entirely 
surrounded by the other species, the smaller region is observed to relax to 
a spherical bubble. The pressure p=�89 can be measured both inside 
and outside the bubble t3~ and, as has been observed with two-dimensional 
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The surface tension is strongest at densities near 12 particles per node, and decreases 
at higher and lower densities. 
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lattice-gas models, (15" 17.29) the pressure inside exceeds that outside and the 
difference is inversely proportional to the radius of the bubble (see Fig. 4). 
This is just the behavior one would expect for a bubble with surface ten- 
sion: Laplace's law, P i n -  Pout  = ~/2R, where R is the radius of the bubble 
and y is the surface tension. Although there are theoretical predictions for 
y in two-dimensional ILG models (3~ and for two- and three-dimensional 
immiscible lattice-Boltzmann t19"2~ and liquid-gas (~7) models, there is not 
yet a theoretical prediction of surface tension for this three-dimensional 
ILG model. The pressure difference is therefore used to measure the surface 
tension, which is found to vary with the density of the fluid as shown in 
Fig. 5, with its maximum value of ~ ~, 2.7 at a density of 12 particles per 
node. 

0.4 

Some anisotropy of the surface tension is expected due to the inherent 
anisotropy of the lattice. Its effect on the shape of domains may be 
quantified by computing the structure function, an average over many 
independent simulations of the power spectrum of the color density field. 
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4.2. Isotropy 
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oblique wavenumber 

Fig. 6. A contour plot of the natural logarithm of an oblique slice [normal to (1, 1, 0)] 
through the structure function [defined in Eq. (16)] wi th/2  = 600 at t = 10. The contours are 
at factors of e, from e -8 at the outermost to e -3 for the bold contours which enclose the 
maximum power of the spectrum. The dotted lines are exact circles for comparison. This slice 
has been chosen because it passes through all but one of the gradient archetypes (see Fig. 2) 
so it is most likely to reveal any anisotropy. Axis labels are in cycles per lattice unit. 



212 Olsoq and Rothman 

That is, given t2 independent simulations with ~j the color density field in 
the j th  simulation, the structure function is 

1 ~ ~ .x 2 
S(k, t) =~jEI.= ~j(X, t )  e - i k  (16) 

If S(k) has spherical symmetry, that is, if the structure function has the 
same value for all k with the same magnitude, then concentration varia- 
tions are equally likely to occur in every direction and interfaces of every 
orientation are equally likely. Figure 6 is a two-dimensional slice through 
the three-dimensional structure function; slices in other directions look 
much the same, so the circular symmetry we see in the figure reflects 
spherical symmetry and, consequently, isotropic phase domains. However, 
surface tension may yet be significantly anisotropic. Indeed, surface tension 
must be strongly anisotropic before equilibrium phase domains depart 
significantly from the spherical. ~17~ 

The time evolution of S(k, t) is studied in a separate paper, ~5~ where 
it is shown that it evolves in a manner consistent with theory and 
experiment, and is approximately self-similar in time. 

5. S H E A R E D  PHASE S E P A R A T I O N  

We now turn to an application of this model to the flow of a two- 
phase mixture under shear. The effective rheology of a phase-separating 
mixture has been observed in experiments ~27'26~ and predicted by 
theory.17.8~ While the theory and experiment are known to be in qualitative 
agreement, a quantitative test of the theory requires a detailed knowledge 
of the interfacial geometry in the mixture, which is not available from 
experiment. In simulations, on the other hand, the interface geometry is 
readily available. In what follows, we simulate a mixture, observe its time- 
dependent effective viscosity and the interface geometry throughout the 
mixture, and compare these observations with the theoretical predictions. 
We find good agreement between the values calculated from the simulation 
and from the theory, and we find that the simulation behaves in qualita- 
tively the same way as experimental systems. 



3D Immiscible Lattice Gas 213 

5.1.  S h e a r  F l o w  in a L a t t i c e  Gas  

In a simple shear flow, the velocity varies linearly in a direction 
orthogonal to the flow direction. For concreteness, let us consider a flow 
w i t h ,  = - v~, at y = 0 and u = v~ at y = Y, i.e., 

Although this flow is simply described, it is not so easily generated in a 
lattice gas with periodic boundary conditions because, although the velocity 
field described in Eq. (17) is linear for y = 0  to y =  Y, it has a sudden jump 
between y = Y and y = 0. Earlier two-dimensional studies (47"48) kept strictly 
periodic boundaries but imposed a nonlinear velocity field by driving the 
middle of the box upward and the outer edges downward. This produces 
a velocity field with kinks, and consequently deleterious effects. On the 
other hand, one might consider imposing nonperiodic boundary conditions 
in the shearing direction, for example, by imposing rigid walls moving at 
some velocity on either side of the simulation volume. This, too, may lead 
to problems, relating to the interaction of the fluids with the wall. 

Such problems were resolved in molecular dynamics studies by Lees 
and Edwards, (52~ who noted that periodic boundaries are equivalent to 
having an infinite array of identical images of the lattice stacked in all 
directions. When a particle leaves the lattice, it enters an image of the 
lattice just as a particle leaves a different image and enters the lattice. The 
Lees and Edwards boundary condition consists of moving the images con- 
tinuously with respect to the lattice, so that a uniform velocity field extends 
across the lattice and all its images. In the lattice gas, this periodicity 
is achieved by two means: first, particles leaving the lattice through a 
shearing face are displaced transversely before reentering the lattice; 
second, the average velocity of particles is adjusted when they reenter the 
lattice so that the velocity of the particles with respect to the imposed flow 
remains the same. 

Figure 7 illustrates the technique. When a particle (represented by the 
short arrow) leaves the y = Y face of the lattice at time t, it reenters the 
y = 0 face not at the same z, but at z - 2 v t ,  and with its vertical velocity 
reduced by 20, .since the image to the right is moving at a speed 2v upward 
with respect to the lattice. Conversely, a particle (not shown) which leaves 
the y -- 0 face reenters the y = Y face at z + 2vt with velocity increased by 
2v. Because the lattice gas is fully discrete, it is not possible to adjust the 
position and velocity by arbitrarily small increments. Instead, the position 
is adjusted by the closest integer number of lattice units. The velocity 
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(a )  ~_ Y _- 

T 
Fig. 7. Shearing boundary conditions in a periodic medium. (a) Maintaining a steady verti- 
cal velocity of - v on the y = 0 side of the box and v on the y = Y side requires that particles 
leaving the right-hand face at time t reenter the left-hand face at a vertical position reduced 
by 2vt, and with (b) vertical velocity reduced by 2v. 

adjustment is a little more complicated: it must be distributed as uniformly 
as possible over all the particles on each face at every time step. 

5.2.  S i m u l a t i o n s  

To simulate both growth and breakage of  phase domains, both the 
properties of  the fluid and the dimensions of  the lattice must be chosen 
appropriately. Phase domains are expected to break when the capillary 
number  Ca = rlSa/~, > 1, where S is the strain rate and a is the characteristic 
radius of a drop. (531 In order to make Ca large enough within the con- 
straints of  the model, the calculations were performed at a density of  18 
particles per node, which both reduces the surface tension (see Fig, 5) and 
increases the dynamic viscosity. (54) Further, the reorienting rule was 
applied only 5 % of  the time, and the recoloring rule only 50 % of the time. 
These conditions give y~0 .011  and q ~  1.2, so that bubbles could be 
stretched and broken while keeping the velocity small enough (u < 0.1) that 
the lattice gas could accurately represent the flow. 

We use a lattice of size 32 x 16 x 160 with y the shear direction and z 
the flow direction for the measurements of effective viscosity. The system is 
initialized with a single stable phase (by labeling all the particles with the 
same color) and driven with a steady shear for a time so as to set up a 
steady state. Then the conditions are suddenly changed so that the single 
phase becomes unstable (by instantaneously labeling some fraction of  the 
particles, at uniformly distributed, random locations with the other color) 
and phase separation is observed. Concurrent  with the phase separation, 
the effective viscosity of  the fluid is measured at each time step over the 
entire lattice. To make this measurement,  the horizontal flux of vertical 
momentum is averaged over the entire simulation volume, excluding the 
outer planes where the forcing is imposed; the ratio of this flux to the strain 
rate then gives the effective dynamic viscosity of the fluid. 
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. /  

y+l 

: .y  

Fig. 8. The momentum flux across the dotted line has a positive contribution from particles 
with velocities represented by the black arrows, and a negative contribution from particles 
with velocities represented by the gray arrows. Summing such contributions over all x and - 
values on either side of the plane represented by the dotted line yields the total flux of vertical 
momentum across the plane. 

Specifically, consider  the flux of  vertical  m o m e n t u m  between planes 
of nodes at y and y + 1 (Fig. 8). Both upward  m o m e n t u m  t ranspor ted  in 
the increasing-y direct ion [par t ic les  with velocity % = (0, 1, 1) at y ]  and 
downward  m o m e n t u m  t ranspor ted  in the decreasing-y direct ion [veloci ty  
c p + ~ 2 = ( 0 , - 1 , - 1 )  at y + l ]  cor respond  to posit ive momen tum flux; 
negative m o m e n t u m  flux cor responds  to e ,  = (0, 1, - 1 )  at y and %+ 12 at 
3' + 1. The net flux between the two planes in the direct ion of  increasing 
velocity is then 

,~  (y )  = ~' rip(x, y, z) +np+ ,2(x, 3, + 1, z) - [n . (x ,  y, z) + n,,+ 12(X, y "{'- 1, Z ) ]  

(18) 

The average shear stress on the fluid is then 

1 Y--2 

~":- Y-3 Z ~(y) (19) 
3,=2 

and the effective dynamic  viscosity is thus 

O" 1,2 
,Ion.= - ~  (20) 

The planes at y = 1 and y = Y, the faces of  the lattice, are not  included, 
because the states on these faces are artificially control led  by the bounda ry  
condit ions.  
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5.3. Observat ions and Compar ison w i t h  Exper iment  

Early in the phase separat ion,  domains  are too small  to be influenced 
by the strain,  and so remain essentially spherical;  as the domains  grow 
larger, they begin to be stretched and to break  and merge, as expected. 
F i g u r e 9  shows the early and late stages of  the phase separat ion;  the 
geometry  of  this s imulat ion was chosen for ease of  visualization,  so it is not  
the same as that  used for effective viscosity measurements .  Eventual ly  the 
domains  converge to a single long thread,  which should be considered an 
art ifact  of  the per iodic  bounda ry  condi t ions  in the vertical  d i r e c t i o n - -  
a l though similar threads  are observed in experiments,  t26~ The effective 
viscosity is observed to rise rapidly and then to decay gradual ly  to a s teady 
state value which is larger  than that  of  the pure fluid (Fig.  10). The effec- 
tive viscosity, bo th  at  the m a x i m u m  and at s teady state, increases with 
increasing concentra t ion  (Fig. 11) and  decreasing strain rate (Fig. 12). 
These observat ions  are in qual i tat ive agreement  with experiments ,  tSs" 27.26) 
though the s t rain-rate  dependence seems counterintui t ive.  

Fig. 9. Growth under shear. The velocity field in each image points down on the left and up 
on the right. As the phase domains grow larger, they are more strongly affected by the 
imposed strain field. The images are at (a) 400 and (b) 800 time steps after the beginning of 
phase separation. At early times, the domains are not distinguishable from the unforced case 
of Fig. 3. The dimensionless strains (for comparison with Fig. 10) are (a) Ct=2.58 and 
(b) 5.16 and the concentration is 10 % red. The velocities on the left and right sides of the box 
are -0.1 and 0.1 lattice units per time step, respectively, on a lattice with the same dimensions 
as in Fig. 3 (i.e., Y=32), so the strain rate is 0.00645 (time step) -~. 
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E f f e c t i v e  Viscosity 
r  

~ ,~,, 

i I ~ l  a , . l , I  j 
p l l  i i  

m I i i i J  

I l l  ' ,  1~ rr , r, l 
W II / I I I I n I ~ \  , , ~,',~ . . . . .  ~2~, 

, N I i i i i f  ,i 
I t  I . i ~ 1  

. , 

0 70 140 
Strain (St) 

Fig. I0. The effective viscosity of  the mixture increases abruptly when phase separation 
starts, then decreases gradually to a steady state. The points are averages over 100 time steps 
in a single simulation with 20% concentration and a strain rate of 0.02 (time step) - t  (solid 
line) or 0.0133 (time s tep) - t  (dashed line). The time has been scaled by the strain rate so that 
the two cases can be compared at the same dimensionless strain. 

Concentration Effect 

~,.q[ i 

, i . J i , i , 

0.0 0.1 0.2 0.3 0.4 
Concentration 

(circles) and steady-state (squares) Fig. 11. Both maximum viscosities increase with 

0.5 

h ( 8 )  increasing concentration, which is consistent with the Doi -Ohta  t eory. These data are for 
simulations with strain rate 0.0133 (time stepp) -I .  
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ee~ 
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Strain Rate Effect 
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Fig, 12. Both the maximum (circles) and steady-state (squares) viscosities increase with 
decreasing strain rate. The simulation with the second-slowest strain rate did not come to a 
steady state, so was omitted. The Doi-Ohta theory ~8~ predicts that the steady-state viscosity 
should be independent of strain rate. 

5.4. Discussion and Compar ison w i t h  Theory  

Broadly speaking, the observed viscosity enhancement must be due to 
some dissipative process which takes place in the phase-separating mixture, 
but  which is absent in a pure fluid. The obvious candidate is the elastic 
energy which is stored in a phase domain as it is stretched, and which is 
dissipated when the domain finally breaks. Onuki  t7~ has developed a theory 
which predicts that the relative enhancement of  the effective viscosity of  a 
mixture should depend on the amount  and orientation of  interfaces per 
unit volume: 

Ar l yA (v,,v=)b (21) 
q --I1S - 

where A~ 7 = r/cn--r/, A = ( l /V)  ~ v 1 ds (the interfacial area per unit volume), 
v~ is the m-component of  the unit normal  to an interface, and ( 2 ) b =  
( l /V)  ~ v 2 d s / A  is the average of  a quanti ty 2 over all the interfaces in a 
sample of  volume V. Doi and Ohta  (8) extended this theory by making a 
cont inuum approximation to the average interfacial quantities and deriving 
the responses of  these continua to macroscopic flow. According to the 
D o i - O h t a  theory, the steady-state effective viscosity should be independent 
of  strain rate. The simulation, on the contrary,  shows an increase of  
viscosity with decreasing strain rate (Fig. 12), which is at least partially 
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borne out by experiment. ~26) This discrepancy may be a consequence of the 
finite size of the simulation. 

The interface integral (vy v=> b may be approximated from the simula- 
tion as the sum over the entire lattice 

< = ! y.f,(x) f_(x) 
, . AV x ' . 

(22) 

with V the volume of the lattice and f~ the ~th component of f. It is then 
a simple matter to calculate the Onuki prediction (21) and compare it 
with the measured values. Figure 13 shows the results for a case with con- 
centration 20 % and strain rate 0.013 (time step) -] ,  although other cases 
were qualitatively similar. The theory consistently predicts the observed 
effective viscosity within 10-20% regardless of concentration or strain rate. 
Because the prediction is consistently low regardless of these simulation 
parameters, it seems likely that the discrepancy is due to some systematic 
error. The most obvious potential error is in the value of the surface ten- 
sion: differences of 10-20% are commonly observed among theoretical 
predictions and different measurement methodsJ 3~ Another possible source 
of error could be the approximation of an integral over a small volume by 
a sum over the entire lattice in Eq. (22). This same approximation was 
used in the earlier two-dimensional lattice-gas calculation, t4s~ wherein a 
discrepancy of the same sign and about the same magnitude was observed. 

Theory and Measurement 

/,i ! 
t ,$ .,J 

t ft 

Fi I ' ,  " , ,  ,,::, ' , . , , ,  

0 70 140 
Strain (St) 

Fig. 13. The Onuki theory, 17) (solid line) predicts the time-dependent effective viscosity 
(dashed line) within 10-20%, regardless of concentration or strain rate. This example is ['or 
concentration 20 % and strain rate 0.013 (time step) - t. 
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6. CONCLUSIONS 

A new immiscible lattice-gas model in three dimensions has been 
described and characterized. It is based upon ideas developed in two- 
dimensional immiscible lattice gases and lattice-Boltzmann models, and 
offers a straightforward extension to three or more fluids. The new 
"dumbbell method" generates strong surface tension by reorienting 
oppositely directed pairs of particles, and the new scheme to discretize 
gradients using the isometries of the lattice provides both a high degree of 
symmetry and an efficient implementation. 

The model has been applied to measurements of the effective viscosity 
of phase-separating mixtures undergoing steady, simple shear, which 
required the application of a new periodic boundary condition with shear. 
The time-dependent effective viscosity is found to be in good qualitative 
agreement with both theoretical predictions and experimental measure- 
ments. This new model appears to be a valid means to simulate the complex 
flow of binary fluid mixtures at low speeds. Preliminary investigations are 
underway to model two-phase flow in porous media using this method. 
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